DEVELOPMENT OF A METHODOLOGY TO CHARACTERIZE THE EFFICIENCY OF VENTILATION IN OPERATING THEATRES

J.F. San José, J.M. Villafruela, F. Castro Dpto. Ingeniería Energética y Fluidomecánica. Escuela de Ingenierías Industriales. Universidad de Valladolid Paseo del Cauce 59, 47011 Valladolid Spain

Current situation:

- High incidence of postoperative wound infections.
- The probability of the wound infection occurrence increases with the quantity of pathogens into the protection zone.
- Influence of the ventilation flow pattern in the quantity of pathogens

Figure 1 Source and routes of infection in the operating room (Lewis 1993).

Current situation:

- Ventilation flowrate between 20 to 25 air changes per hour (ACH).
- HEPA filters are used.

 The activity of the operating theatre personnel is the main source of particles containing infections agents

Current situation:

- There are two types of system ventilation in operating theatres:
 - The turbulent mixed-flow
 - The low turbulence displacement air flow.

Objetives:

 In this work we present a methodology to characterize the efficiency of the ventilation in operating theatre by means of the concentration of active pathogens using CFD simulations.

Ventilation quality

- The air changes per hour (ACH) is a very important parameter but is not sufficient
- The air exchange efficiency

$$\varepsilon_a = \frac{\text{minimum replacement time}}{\text{actual mean replacement time}} = \frac{V/Q_e}{2~\bar{\tau}_a}$$

• The contaminant removal effectiveness

$$\varepsilon_c = \frac{\text{Mean concentration in the exhaust}}{\text{Mean concentration in the room}} = \frac{c_e}{\bar{c}}$$

Infectious particles

- In the case of operating theatres the main contaminant is the skin scales
 - particles are shed continuously from exposed regions of skin on both staff and patients (10⁷ per day)
 - particles are of the order of 10 microns
 - Approximately 10% will be colonized with microorganisms.

Infectious particles model

- We model the contaminant like an aerosol formed of very fine particles which have pathogens stuck to them.
- We have chosen an Eulerian model,
- The skin scales are transported by convection of the air flow, and by the turbulent diffusion
- When the contaminant particles hit a solid surface they can stick on or bounce away from the surface
- We have also taken into account the viability of the pathogens

Hypothesis

 The risk of contamination of the surgical site it will be proportional to the mean concentration of active pathogens in a *surgical volume* near the wound.

Numerical simulation steps

Experimental set up

 To validate the numerical simulation of a ventilation flow pattern, in an operating theater type A, a scale 1:7 model was built

Experimental results

 To validate the numerical simulation of a ventilation flow pattern, in an operating theater type A, a scale 1:7 model was built

Experimental results

CFD Numerical model

- Isothermal simulation
- The numerical model solves:
 - the continuity, momentum conservation equations
 - turbulence conservation equations (The RNG k- ε turbulence model is used)
 - contaminant concentration conservation equation
 - mean age of air, mean age of contaminant conservation equations
- Once the age of the contaminant is calculated, the viability/survival model of micro-organisms can be applied and, thus, calculate the concentration of active pathogens

Computational domain

- 6mx6mx3.5 m operating room
- laminar inlet diffuser, 8 exhaust grilles

Age of the air in a vertical plane y= 0.5 m

Age of the air in a horizontal plane z= 0.9 m

Distribution of concentration of active pathogens in a vertical plane. Contaminant staff 1

Distribution of concentration of active pathogens in a vertical plane. Contaminant staff 2

Distribution of concentration of active pathogens in a vertical plane. Contaminant staff 3

Distribution of concentration of active pathogens in a vertical plane. Contaminant anesthesist

Velocity field near the lamps

Conclusions

- A methodology to evaluate the infection risk in an operating theater has been developed
- This methodology let us to compare different configurations of ventilation systems
- A 3D CFD model that calculates the concentration of active pathogens is used